Age of Earth

The Blue Marble, Earth as seen in 1972 from Apollo 17

The age of Earth is estimated to be 4.54 ± 0.05 billion years.[1][2][3][4] This age represents the final stages of Earth's accretion and planetary differentiation.[5] Age estimates are based on evidence from radiometric age-dating of meteoritic material[6]—consistent with the radiometric ages of the oldest-known terrestrial material[7] and lunar samples[8]—and astrophysical accretion models consistent with observations of planet formation in protoplanetary disks.[9][10]

Following the development of radiometric dating in the early 20th century, measurements of lead in uranium-rich minerals showed that some were in excess of a billion years old.[11] The oldest such minerals analyzed to date—small crystals of zircon from the Jack Hills of Western Australia—are at least 4.404 billion years old.[7][12][13] Calcium–aluminium-rich inclusions—the oldest known solid constituents within meteorites that are formed within the Solar System—are 4.5673 ± 0.00016 billion years old[14][15] giving a lower limit for the age of the Solar System.

It is hypothesized that the accretion of Earth began soon after the formation of the calcium-aluminium-rich inclusions. Because the duration of this accretion process is not yet adequately constrained—predictions from different accretion models range from around 30 million to 100 million years[5][16]—the difference between the age of Earth and of the oldest rocks is difficult to determine. It can also be difficult to determine the exact age of the oldest rocks on Earth, exposed at the surface, as they are aggregates of minerals of possibly different ages.

  1. ^ "Age of the Earth". U.S. Geological Survey. 1997. Archived from the original on 23 December 2005. Retrieved 2006-01-10.
  2. ^ Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Special Publications, Geological Society of London. 190 (1): 205–221. Bibcode:2001GSLSP.190..205D. doi:10.1144/GSL.SP.2001.190.01.14. S2CID 130092094.
  3. ^ Manhesa, Gérard; Allègre, Claude J.; Dupréa, Bernard & Hamelin, Bruno (1980). "Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics". Earth and Planetary Science Letters. 47 (3): 370–382. Bibcode:1980E&PSL..47..370M. doi:10.1016/0012-821X(80)90024-2.
  4. ^ Braterman, Paul S. (2013). "How Science Figured Out the Age of Earth". Scientific American. Archived from the original on 2016-04-12.
  5. ^ a b Mezger, K.; Schönbächler, M.; Bouvier, A. (2020-03-04). "Accretion of the Earth—Missing Components?". Space Science Reviews. 216 (2): 27. doi:10.1007/s11214-020-00649-y. hdl:20.500.11850/405628. ISSN 1572-9672.
  6. ^ Hedman, Matthew (2007). "9: Meteorites and the Age of the Solar System". The Age of Everything. University of Chicago Press. pp. 142–162. ISBN 9780226322940. Archived from the original on 2018-02-14.
  7. ^ a b Wilde, S. A.; Valley, J. W.; Peck, W. H.; Graham C. M. (2001-01-11). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago". Nature. 409 (6817): 175–178. Bibcode:2001Natur.409..175W. doi:10.1038/35051550. PMID 11196637. S2CID 4319774.
  8. ^ Barboni, Melanie; Boehnke, Patrick; Keller, Brenhin; Kohl, Issaku E.; Schoene, Blair; Young, Edward D.; McKeegan, Kevin D. (2017-01-06). "Early formation of the Moon 4.51 billion years ago". Science Advances. 3 (1): e1602365. Bibcode:2017SciA....3E2365B. doi:10.1126/sciadv.1602365. ISSN 2375-2548. PMC 5226643. PMID 28097222.
  9. ^ Halliday, Alex N.; Canup, Robin M. (2022-11-29). "The accretion of planet Earth". Nature Reviews Earth & Environment. 4 (1): 19–35. doi:10.1038/s43017-022-00370-0. ISSN 2662-138X.
  10. ^ Pfalzner, S; Davies, M B; Gounelle, M; Johansen, A; Münker, C; Lacerda, P; Zwart, S Portegies; Testi, L; Trieloff, M; Veras, D (2015-06-01). "The formation of the solar system". Physica Scripta. 90 (6): 068001. arXiv:1501.03101. doi:10.1088/0031-8949/90/6/068001. ISSN 0031-8949.
  11. ^ Boltwood, B. B. (1907). "On the ultimate disintegration products of the radio-active elements. Part II. The disintegration products of uranium". American Journal of Science. 23 (134): 77–88. doi:10.2475/ajs.s4-23.134.78. S2CID 131688682.
    For the abstract, see: Chemical Abstracts Service, American Chemical Society (1907). Chemical Abstracts. New York, London: American Chemical Society. p. 817. Retrieved 2008-12-19.
  12. ^ Valley, John W.; Peck, William H.; Kin, Elizabeth M. (1999). "Zircons Are Forever" (PDF). The Outcrop, Geology Alumni Newsletter. University of Wisconsin-Madison. pp. 34–35. Archived (PDF) from the original on 2009-02-26. Retrieved 2008-12-22.
  13. ^ Wyche, S.; Nelson, D. R.; Riganti, A. (2004). "4350–3130 Ma detrital zircons in the Southern Cross Granite–Greenstone Terrane, Western Australia: implications for the early evolution of the Yilgarn Craton". Australian Journal of Earth Sciences. 51 (1): 31–45. Bibcode:2004AuJES..51...31W. doi:10.1046/j.1400-0952.2003.01042.x.
  14. ^ Amelin, Yuri; Kaltenbach, Angela; Iizuka, Tsuyoshi; Stirling, Claudine H.; Ireland, Trevor R.; Petaev, Michail; Jacobsen, Stein B. (2010-12-01). "U–Pb chronology of the Solar System's oldest solids with variable 238U/235U". Earth and Planetary Science Letters. 300 (3): 343–350. doi:10.1016/j.epsl.2010.10.015. hdl:1885/21305. ISSN 0012-821X.
  15. ^ Connelly, James N.; Bizzarro, Martin; Krot, Alexander N.; Nordlund, Åke; Wielandt, Daniel; Ivanova, Marina A. (2012-11-02). "The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk". Science. 338 (6107): 651–655. doi:10.1126/science.1226919.
  16. ^ Sossi, Paolo A.; Stotz, Ingo L.; Jacobson, Seth A.; Morbidelli, Alessandro; O’Neill, Hugh St C. (2022-07-07). "Stochastic accretion of the Earth". Nature Astronomy. 6 (8): 951–960. doi:10.1038/s41550-022-01702-2. ISSN 2397-3366. PMC 7613298.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne